3.1 Accessing cloud-hosted ITS_LIVE data#

Introduction#

This notebook demonstrates how to query and access cloud-hosted Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) data from Amazon Web Services (AWS) S3 buckets. These data are stored as Zarr data cubes, a cloud-optimized format for array data. They are read into memory as Xarray Datasets.


A. Overview of ITS_LIVE data

    1. Data structure overview

    1. Climate Forecast (CF) Metadata Conventions

B. Read ITS_LIVE data from AWS S3 using Xarray

    1. Overview of ITS_LIVE data storage and catalog

    1. Read ITS_LIVE data from S3 storage into memory

    1. Check spatial footprint of data

C. Query ITS_LIVE catalog

    1. Find ITS_LIVE granule for a point of interest

    1. Read + visualize spatial footprint of ITS_LIVE data

Concepts

  • Understand how data is organized in AWS S3 buckets,

  • Query and access cloud-optimized dataset from cloud object storage,

  • Create a vector data object representing the footprint of a raster dataset,

  • Preliminary visualization of data extent,

Techniques

Expand the next cell to see specific packages used in this notebook and relevant system and version information.


Hide code cell source
%xmode minimal
import geopandas as gpd
import hvplot.pandas
import xarray as xr
from shapely.geometry import Point, Polygon
Exception reporting mode: Minimal

A. Overview of ITS_LIVE data#

Skipping ahead a few steps, let’s take a look at an ITS_LIVE data cube so that we have some expectations about what we’ll see in the data catalog and once we read a data cube into memory.

Specifically, we want to understand an ITS_LIVE time series data cube in the context of the Xarray data model. If you’re new to working with Xarray, the Data Structures documentation is very useful for getting a hang of the different components that are the building blocks of Xarray.Dataset objects.

Hide code cell source
init_url = "http://its-live-data.s3.amazonaws.com/datacubes/v2-updated-october2024/N60W130/ITS_LIVE_vel_EPSG3413_G0120_X-3250000_Y250000.zarr"
datacube = xr.open_dataset(init_url, engine="zarr", decode_timedelta=True, chunks="auto")
datacube
<xarray.Dataset> Size: 4TB
Dimensions:                     (mid_date: 138421, y: 834, x: 834)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 1MB 2020-03-16T08:4...
  * x                           (x) float64 7kB -3.3e+06 -3.3e+06 ... -3.2e+06
  * y                           (y) float64 7kB 2.999e+05 2.998e+05 ... 2e+05
Data variables: (12/60)
    M11                         (mid_date, y, x) float32 385GB dask.array<chunksize=(40000, 20, 20), meta=np.ndarray>
    M11_dr_to_vr_factor         (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    M12                         (mid_date, y, x) float32 385GB dask.array<chunksize=(40000, 20, 20), meta=np.ndarray>
    M12_dr_to_vr_factor         (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    acquisition_date_img1       (mid_date) datetime64[ns] 1MB dask.array<chunksize=(138421,), meta=np.ndarray>
    acquisition_date_img2       (mid_date) datetime64[ns] 1MB dask.array<chunksize=(138421,), meta=np.ndarray>
    ...                          ...
    vy_error_modeled            (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_error_slow               (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_error_stationary         (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_stable_shift             (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_stable_shift_slow        (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_stable_shift_stationary  (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:54:32
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N60W130/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N60W130/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

1) Data structure overview#

Dimensions#

  • This object has 3 dimensions, mid_date, x, and y.

  • Each dimension has a corresponding coordinate variable of the same name. Think of these as “axes ticks” on a figure if you were to plot the data.

Data Variables#

  • Expanding the ‘Data Variables’ label, you can see that there are many (60!) variables.

  • Each variable exists along one or more dimension (eg. (mid_date,x,y)), has an associated data type (eg.float32), and has an underlying array that holds that variable’s data.

Attributes#

  • Data is commonly associated with related “metadata” – data that describes data. For example, the floatingice variable has an attribute description : floating ice mask, 0 = non-floating-ice, 1 = floating-ice that tells you how to interpret its values. All array-based Xarray objects (data variables, coordinate variables, DataArrays and Datasets) can have attributes attached to them.

datacube.floatingice
<xarray.DataArray 'floatingice' (y: 834, x: 834)> Size: 3MB
dask.array<open_dataset-floatingice, shape=(834, 834), dtype=float32, chunksize=(834, 834), chunktype=numpy.ndarray>
Coordinates:
  * x        (x) float64 7kB -3.3e+06 -3.3e+06 -3.3e+06 ... -3.2e+06 -3.2e+06
  * y        (y) float64 7kB 2.999e+05 2.998e+05 2.997e+05 ... 2.001e+05 2e+05
Attributes:
    description:    floating ice mask, 0 = non-floating-ice, 1 = floating-ice
    flag_meanings:  non-ice ice
    flag_values:    [0, 1]
    grid_mapping:   mapping
    standard_name:  floating ice mask
    url:            https://its-live-data.s3.amazonaws.com/autorift_parameter...

Other Coordinate Variables#

Metadata can take the form of dimensional arrays too. For example, the satellite_img1 and satellite_img2 arrays record the satellite sources for the image pair used to construct the velocity data. This is important metadata about the observed velocity fields. Such variables can be set as “non-dimension coordinate variables” if desired, though we will not do so here.

datacube.satellite_img1
<xarray.DataArray 'satellite_img1' (mid_date: 138421)> Size: 1MB
dask.array<open_dataset-satellite_img1, shape=(138421,), dtype=<U2, chunksize=(138421,), chunktype=numpy.ndarray>
Coordinates:
  * mid_date  (mid_date) datetime64[ns] 1MB 2020-03-16T08:40:55.190909952 ......
Attributes:
    description:    id of the satellite that acquired image 1
    standard_name:  image1_satellite

Tip

If you haven’t yet, review the Metadata naming and Climate Forecast (CF) Metadata Conventions sections of the Relevant Concepts page.

B. Read ITS_LIVE data from AWS S3 using Xarray#

Now that we know a bit more about the ITS_LIVE dataset, we can start querying the catalog to access the data we’re interested in.

1) Overview of ITS_LIVE data storage and catalog#

The ITS_LIVE project details a number of data access options on their website. Here, we will be accessing ITS_LIVE data in the form of zarr data cubes that are stored in S3 buckets hosted by Amazon Web Services (AWS). There is a AWS S3 explorer index that we will use to query the data catalog. There, you can browse the contents of the bucket in the AWS S3 Explorer. Click this link to download the file.

Tip

You can also use the ITS_LIVE API to access ITS_LIVE data cube urls corresponding to different search conditions as well as Python code provided on the ITS_LIVE website. We go through the steps of looking at the catalog in order to get a better understanding of how S3 buckets are organized.

To query the data stored in the bucket, we will download the catalog_v02.json that is located in the bucket linked above.

Understanding the data#

The first step in working with a new dataset is understanding how it is organized. To query the data stored in the bucket, we will download the catalog_v02.json that is linked above. This catalog contains spatial information and properties of ITS_LIVE data cubes as well as the URL used to access each cube. Let’s take a look at the entry for a single data cube and the information that it contains:

../../_images/screengrab_itslive_catalog_entry.png

The top portion of the picture shows the spatial extent of the data cube in lat/lon units. Below that, we have properties such as the EPSG code of the coordinate reference system, the spatial footprint in projected units, and the url of the zarr object.

Let’s take a look at the url more in-depth:

http://its-live-data.s3.amazonaws.com/datacubes/v2-updated-october2024/S40E170/ITS_LIVE_vel_EPSG32759_G0120_X450000_Y5250000.zarr

From this link we can see that we are looking at ITS_LIVE data located in an s3 bucket hosted by Amazon Web Services (AWS). We also see that we’re looking in the version 2 data cube directory. The next bit gives us information about the global location of the cube (N40E080). The actual file name ITS_LIVE_vel_EPSG32645_G0120_X250000_Y4750000.zarr tells us that we are looking at ice velocity data (its_live also has elevation data), in the CRS associated with EPSG 32645 (this code indicates UTM zone 45N). X250000_Y4750000 tells us more about the spatial footprint of the datacube within the UTM zone.

2) Read ITS_LIVE data from S3 storage into memory#

We’ve found the url associated with the tile we want to access, let’s try to open the data cube using Xarray.open_dataset():

url = "http://its-live-data.s3.amazonaws.com/datacubes/v2/N30E090/ITS_LIVE_vel_EPSG32646_G0120_X750000_Y3350000.zarr"

In addition to passing url to xr.open_dataset(), we include chunks='auto'. This introduces dask into our workflow; chunks='auto' will choose chunk sizes that match the underlying data structure; this is often ideal, but sometimes you may need to specify different chunking schemes. You can read more about choosing good chunk sizes here; subsequent notebooks in this tutorial will explore different approaches to dask chunking.

dc = xr.open_dataset(url, decode_timedelta=True)
syntax error, unexpected WORD_WORD, expecting SCAN_ATTR or SCAN_DATASET or SCAN_ERROR
context: <?xml^ version="1.0" encoding="UTF-8"?><Error><Code>PermanentRedirect</Code><Message>The bucket you are attempting to access must be addressed using the specified endpoint. Please send all future requests to this endpoint.</Message><Endpoint>its-live-data.s3-us-west-2.amazonaws.com</Endpoint><Bucket>its-live-data</Bucket><RequestId>R3GQTKJA7PH0CZGM</RequestId><HostId>inO594tb18AfZ348uIx+emqppYP8+bB7+H/wRbwOwo2RKhgmaA8VarBX4WW3Gn9+IVZONprD1xgcqmthrYSWlNRgUTL5H7nf</HostId></Error>
KeyError: [<class 'netCDF4._netCDF4.Dataset'>, ('http://its-live-data.s3.amazonaws.com/datacubes/v2/N30E090/ITS_LIVE_vel_EPSG32646_G0120_X750000_Y3350000.zarr',), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('persist', False)), 'e65db977-2444-427a-bfc9-c7e71a6eed2a']


During handling of the above exception, another exception occurred:

OSError: [Errno -72] NetCDF: Malformed or inaccessible DAP2 DDS or DAP4 DMR response: 'http://its-live-data.s3.amazonaws.com/datacubes/v2/N30E090/ITS_LIVE_vel_EPSG32646_G0120_X750000_Y3350000.zarr'

As you can see, this doesn’t quite work. When passing the url to xr.open_dataset(), if a backend isn’t specified, xarray will expect a netcdf file. Because we’re trying to open a zarr file we need to add an additional argument to xr.open_dataset(), shown in the next code cell. You can find more information here.

We set decode_coords="all" so that Xarray will auto-detect a number of variables as coordinate variables — these are variables that are usually describing properties that are common to many “data variables”. In our case, it picks up the mapping variable which describes the Coordinate Reference System for this datacube.

dc = xr.open_dataset(url, engine="zarr", chunks="auto", decode_timedelta=False, decode_coords="all")
dc
<xarray.Dataset> Size: 771GB
Dimensions:                     (mid_date: 25243, y: 833, x: 833)
Coordinates:
    mapping                     <U1 4B ...
  * mid_date                    (mid_date) datetime64[ns] 202kB 2022-06-07T04...
  * x                           (x) float64 7kB 7.001e+05 7.003e+05 ... 8e+05
  * y                           (y) float64 7kB 3.4e+06 3.4e+06 ... 3.3e+06
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 70GB dask.array<chunksize=(25243, 30, 30), meta=np.ndarray>
    M11_dr_to_vr_factor         (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
    M12                         (mid_date, y, x) float32 70GB dask.array<chunksize=(25243, 30, 30), meta=np.ndarray>
    M12_dr_to_vr_factor         (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
    acquisition_date_img1       (mid_date) datetime64[ns] 202kB dask.array<chunksize=(25243,), meta=np.ndarray>
    acquisition_date_img2       (mid_date) datetime64[ns] 202kB dask.array<chunksize=(25243,), meta=np.ndarray>
    ...                          ...
    vy_error_modeled            (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
    vy_error_slow               (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
    vy_error_stationary         (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
    vy_stable_shift             (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
    vy_stable_shift_slow        (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
    vy_stable_shift_stationary  (mid_date) float32 101kB dask.array<chunksize=(25243,), meta=np.ndarray>
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

This one worked! Let’s stop here and define a function that we can use to read additional s3 objects into memory as Xarray Datasets. This will come in handy later in this notebook and in subsequent notebooks. We will store this and other utility functions in itslive_tools.py for reuse across notebooks.

def read_in_s3(http_url: str, chunks: str | dict | None = "auto") -> xr.Dataset:
    """I'm a function that takes a url pointing to the location of a zarr data cube.
    I return an Xarray Dataset. I can take an optional chunk argument which specifies
    how the data will be chunked when read into memory"""
    datacube = xr.open_dataset(
        http_url,
        engine="zarr",
        chunks=chunks,
        decode_coords="all",
        decode_timedelta=False,
    )
    return datacube

3) Check spatial footprint of data#

We just read in a very large dataset.

We’d like an easy way to be able to visualize the footprint of this data to ensure we specified the correct location without plotting a data variable over the entire footprint, which would be much more computationally and time-intensive.

To do so, we need to understand the coordinate system of the data, and its bounds.

This dataset has its coordinate system info stored in an array named mapping. How would you know that? Scroll through the Xarray Dataset repr, and check the attributes. Variables with CRS information tend to have the crs_wkt, grid_mapping, GeoTransform and related attributes that describe the coordinate system.

dc.mapping
<xarray.DataArray 'mapping' ()> Size: 4B
[1 values with dtype=<U1]
Coordinates:
    mapping  <U1 4B ...
Attributes: (12/14)
    GeoTransform:                      700072.5 120.0 0 3399967.5 0 -120.0
    crs_wkt:                           PROJCS["WGS 84 / UTM zone 46N",GEOGCS[...
    false_easting:                     500000.0
    false_northing:                    0.0
    grid_mapping_name:                 universal_transverse_mercator
    inverse_flattening:                298.257223563
    ...                                ...
    proj4text:                         +proj=utm +zone=46 +datum=WGS84 +units...
    scale_factor_at_central_meridian:  0.9996
    semi_major_axis:                   6378137.0
    spatial_epsg:                      32646
    spatial_ref:                       PROJCS["WGS 84 / UTM zone 46N",GEOGCS[...
    utm_zone_number:                   46.0

The following function creates a GeoPandas.GeoDataFrame describing the spatial footprint of an xr.Dataset.

def get_bounds_polygon(input_xr: xr.Dataset) -> gpd.GeoDataFrame:
    """I'm a function that takes an Xarray Dataset and returns a GeoPandas DataFrame of the bounding box of the Xarray Dataset."""

    xmin = input_xr.coords["x"].data.min()
    xmax = input_xr.coords["x"].data.max()

    ymin = input_xr.coords["y"].data.min()
    ymax = input_xr.coords["y"].data.max()

    pts_ls = [(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax), (xmin, ymin)]

    crs = f"epsg:{input_xr.mapping.spatial_epsg}"

    polygon_geom = Polygon(pts_ls)
    polygon = gpd.GeoDataFrame(index=[0], crs=crs, geometry=[polygon_geom])

    return polygon

Now let’s take a look at the cube we’ve already read:

bbox = get_bounds_polygon(dc)

get_bounds_polygon() returns a geopandas.GeoDataFrame object in the same projection as the velocity data object (local UTM). Re-project to latitude/longitude to view the object more easily on a map:

bbox = bbox.to_crs("EPSG:4326")

To visualize the footprint, we use the interactive plotting library, hvPlot.

poly = bbox.hvplot(legend=True, alpha=0.3, tiles="ESRI", color="red", geo=True)
poly

C. Query ITS_LIVE catalog#

1) Find ITS_LIVE granule for a point of interest#

Let’s look in a different region and see how we could search the ITS_LIVE data cube catalog for the granule that covers our location of interest. There are many ways to do this, this is just one example.

First, we read in the catalog GeoJSON file with geopandas:

itslive_catalog = gpd.read_file("https://its-live-data.s3.amazonaws.com/datacubes/catalog_v02.json")
itslive_catalog
fill-opacity fill roi_percent_coverage geometry_epsg datacube_exist zarr_url epsg granule_count geometry
0 0.984866 red 1.513354 {'type': 'Polygon', 'coordinates': [[[400000, ... 1 http://its-live-data.s3.amazonaws.com/datacube... 32718 804 POLYGON ((-76.41134 -50.54338, -75.00000 -50.5...
1 0.956741 red 4.325908 {'type': 'Polygon', 'coordinates': [[[400000, ... 1 http://its-live-data.s3.amazonaws.com/datacube... 32718 1754 POLYGON ((-76.38517 -49.64426, -75.00000 -49.6...
2 0.941388 red 5.861168 {'type': 'Polygon', 'coordinates': [[[500000, ... 1 http://its-live-data.s3.amazonaws.com/datacube... 32718 895 POLYGON ((-75.00000 -54.14810, -73.46930 -54.1...
3 0.794830 red 20.516970 {'type': 'Polygon', 'coordinates': [[[500000, ... 1 http://its-live-data.s3.amazonaws.com/datacube... 32718 1956 POLYGON ((-75.00000 -53.24927, -73.50155 -53.2...
4 0.881647 red 11.835322 {'type': 'Polygon', 'coordinates': [[[500000, ... 1 http://its-live-data.s3.amazonaws.com/datacube... 32718 4868 POLYGON ((-75.00000 -52.35029, -73.53212 -52.3...
... ... ... ... ... ... ... ... ... ...
3081 0.430030 red 56.997012 {'type': 'Polygon', 'coordinates': [[[2600000,... 1 http://its-live-data.s3.amazonaws.com/datacube... 3031 3280 POLYGON ((96.58195 -66.24424, 96.34019 -65.368...
3082 0.926190 red 7.381008 {'type': 'Polygon', 'coordinates': [[[2600000,... 1 http://its-live-data.s3.amazonaws.com/datacube... 3031 236 POLYGON ((94.39871 -66.32873, 94.23640 -65.449...
3083 0.963654 red 3.634587 {'type': 'Polygon', 'coordinates': [[[2600000,... 1 http://its-live-data.s3.amazonaws.com/datacube... 3031 3021 POLYGON ((87.79740 -66.37959, 87.87890 -65.498...
3084 0.803025 red 19.697531 {'type': 'Polygon', 'coordinates': [[[2700000,... 1 http://its-live-data.s3.amazonaws.com/datacube... 3031 855 POLYGON ((98.42697 -65.25528, 98.13010 -64.386...
3085 0.768181 red 23.181950 {'type': 'Polygon', 'coordinates': [[[2700000,... 1 http://its-live-data.s3.amazonaws.com/datacube... 3031 709 POLYGON ((96.34019 -65.36838, 96.11550 -64.494...

3086 rows × 9 columns

Below is a function to query the catalog for the s3 url covering a given point. You could easily tweak this function (or write your own!) to select granules based on different properties. Play around with the itslive_catalog object to become more familiar with the data it contains and different options for indexing.

Note

Since this tutorial was originally written, the ITS_LIVE Python Client was released. This is a great way to access ITS_LIVE data cubes.

def find_granule_by_point(input_point: list) -> str:
    """I take a point in [lon, lat] format and return the url of the granule containing specified point.
    Point must be passed in EPSG:4326."""

    catalog = gpd.read_file("https://its-live-data.s3.amazonaws.com/datacubes/catalog_v02.json")

    # make shapely point of input point
    p = gpd.GeoSeries([Point(input_point[0], input_point[1])], crs="EPSG:4326")
    # make gdf of point
    gdf = gdf = gpd.GeoDataFrame({"label": "point", "geometry": p})
    # find row of granule
    granule = catalog.sjoin(gdf, how="inner")

    url = granule["zarr_url"].values[0]
    return url

Choose a location in Alaska:

url = find_granule_by_point([-138.958776, 60.748561])
url
'http://its-live-data.s3.amazonaws.com/datacubes/v2-updated-october2024/N60W130/ITS_LIVE_vel_EPSG3413_G0120_X-3250000_Y250000.zarr'

Great, this function returned a single url corresponding to the data cube covering the point we supplied. Let’s use the read_in_s3 function we defined to open the datacube as an xarray.Dataset

datacube = read_in_s3(url)
datacube
<xarray.Dataset> Size: 4TB
Dimensions:                     (mid_date: 138421, y: 834, x: 834)
Coordinates:
    mapping                     <U1 4B ...
  * mid_date                    (mid_date) datetime64[ns] 1MB 2020-03-16T08:4...
  * x                           (x) float64 7kB -3.3e+06 -3.3e+06 ... -3.2e+06
  * y                           (y) float64 7kB 2.999e+05 2.998e+05 ... 2e+05
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 385GB dask.array<chunksize=(40000, 20, 20), meta=np.ndarray>
    M11_dr_to_vr_factor         (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    M12                         (mid_date, y, x) float32 385GB dask.array<chunksize=(40000, 20, 20), meta=np.ndarray>
    M12_dr_to_vr_factor         (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    acquisition_date_img1       (mid_date) datetime64[ns] 1MB dask.array<chunksize=(138421,), meta=np.ndarray>
    acquisition_date_img2       (mid_date) datetime64[ns] 1MB dask.array<chunksize=(138421,), meta=np.ndarray>
    ...                          ...
    vy_error_modeled            (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_error_slow               (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_error_stationary         (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_stable_shift             (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_stable_shift_slow        (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
    vy_stable_shift_stationary  (mid_date) float32 554kB dask.array<chunksize=(138421,), meta=np.ndarray>
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:54:32
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N60W130/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N60W130/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

2) Read + visualize spatial footprint of ITS_LIVE data#

Use the get_bounds_polyon function to take a look at the footprint using hvplot().

bbox_dc = get_bounds_polygon(datacube)
poly = bbox_dc.to_crs("EPSG:4326").hvplot(legend=True, alpha=0.5, tiles="ESRI", color="red", geo=True)
poly

Conclusion#

This notebook demonstrated how to query and access a cloud-optimized remote sensing time series dataset stored in an AWS S3 bucket. The subsequent notebooks in this tutorial will go into much more detail on how to organize, examine and analyze this data.