3. Individual glacier data inspection#

This notebook will walk through steps to read in and organize velocity data and clip it to the extent of a single glacier. The tools we will use include xarray, rioxarray, geopandas, and flox.

To clip ITS_LIVE data to the extent of a single glacier, we will use a vector dataset of glacier outlines, the Randolph Glacier Inventory.

Learning goals#

Concepts#

  • Subset large raster dataset to area of interest using vector data

  • Examine different types of data stored within a raster object (in this example, the data is in the format of a zarr datacube

  • Handling different coordinate reference systems and projections

  • Dataset inspection using:

    • Xarray label- and index-based selection

    • Grouped computations and reductions

    • Visualization tools

  • Dimensional reductions and computations

  • Examining velocity component vectors

  • Calculating the magnitude of the displacement vector from velocity component vectors

Techniques#

  • Read in raster data using xarray

  • Read in vector data using geopandas

  • Manipulate and organize raster data using xarray functionality

  • Explore larger-than-memory data using dask and xarray

  • Troubleshooting errors and warnings

  • Visualizing Xarray data using FacetGrid objects

Other useful resources#

These are resources that contain additional examples and discussion of the content in this notebook and more.

Software + Setup#

First, let’s install the python libraries that we’ll need for this notebook:

%xmode minimal
Exception reporting mode: Minimal
import json
import os
import urllib.request

import cartopy
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import rioxarray as rxr
import xarray as xr
from shapely.geometry import MultiPolygon, Point, Polygon

%config InlineBackend.figure_format='retina'
import logging

import psutil
from dask.distributed import Client, LocalCluster
#cluster = LocalCluster(
#    n_workers = psutil.cpu_count(logical=True)-1, 
#    silence_logs = logging.ERROR, 
#    threads_per_worker=1,
#)
#client = Client(cluster)
#client

Reading in ITS_LIVE ice velocity dataset (raster data)#

We will use some of the functions we defined in the data access notebook in this notebook and others within this tutorial. They are all stored in the itslivetools.py file. If you cloned this tutorial from its github repository you’ll see that itslivetools.py is in the same directory as our current notebook, so we can import it with the following line:

import itslivetools

First, let’s read in the catalog again:

itslive_catalog = gpd.read_file('https://its-live-data.s3.amazonaws.com/datacubes/catalog_v02.json')

Next, we’ll use the gind_granule_by_point() and read_in_s3() functions to read in the ITS_LIVE zarr datacube as an xarray.Dataset object.

The read_in_s3() function will take a url that points to a zarr data cube stored in an AWS S3 bucket and return an xarray dataset.

I started with chunk_size='auto' which will choose chunk sizes that match the underlying data structure (this is generally ideal). More about choosing good chunk sizes here. If you want to use a different chunk size, specify it when you call the read_in_s3() function.

url = itslivetools.find_granule_by_point([95.180191, 30.645973])
url
'http://its-live-data.s3.amazonaws.com/datacubes/v2-updated-october2024/N30E090/ITS_LIVE_vel_EPSG32646_G0120_X750000_Y3350000.zarr'
dc = itslivetools.read_in_s3(url)
dc
<xarray.Dataset> Size: 1TB
Dimensions:                     (mid_date: 47892, y: 833, x: 833)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 383kB 2022-06-07T04...
  * x                           (x) float64 7kB 7.001e+05 7.003e+05 ... 8e+05
  * y                           (y) float64 7kB 3.4e+06 3.4e+06 ... 3.3e+06
Data variables: (12/60)
    M11                         (mid_date, y, x) float32 133GB dask.array<chunksize=(47892, 20, 20), meta=np.ndarray>
    M11_dr_to_vr_factor         (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    M12                         (mid_date, y, x) float32 133GB dask.array<chunksize=(47892, 20, 20), meta=np.ndarray>
    M12_dr_to_vr_factor         (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    acquisition_date_img1       (mid_date) datetime64[ns] 383kB dask.array<chunksize=(47892,), meta=np.ndarray>
    acquisition_date_img2       (mid_date) datetime64[ns] 383kB dask.array<chunksize=(47892,), meta=np.ndarray>
    ...                          ...
    vy_error_modeled            (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_error_slow               (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_error_stationary         (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_stable_shift             (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_stable_shift_slow        (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_stable_shift_stationary  (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

Working with dask#

We can see that this is a very large dataset. We have a time dimension with a length of 25,243, and then x and y dimensions that are both 833 units long. There are 60 variables within this dataset that exist along some or all of the dimensions (with the exception of the mapping data variable which contains geographic information. If you expand one of the 3-dimensional variables (exists along x,y, and mid_date) you’ll see that it is very large (65 GB!). This is more than my computer can handle so we will use dask, which is a python package for parallelizing and scaling workflows that let’s us work with larger-than-memory data efficiently.

dc.v
<xarray.DataArray 'v' (mid_date: 47892, y: 833, x: 833)> Size: 133GB
dask.array<open_dataset-v, shape=(47892, 833, 833), dtype=float32, chunksize=(47892, 20, 20), chunktype=numpy.ndarray>
Coordinates:
  * mid_date  (mid_date) datetime64[ns] 383kB 2022-06-07T04:21:44.211208960 ....
  * x         (x) float64 7kB 7.001e+05 7.003e+05 7.004e+05 ... 7.999e+05 8e+05
  * y         (y) float64 7kB 3.4e+06 3.4e+06 3.4e+06 ... 3.3e+06 3.3e+06
Attributes:
    description:    velocity magnitude
    grid_mapping:   mapping
    standard_name:  land_ice_surface_velocity
    units:          meter/year

We are reading this in as a dask array. Let’s take a look at the chunk sizes:

Note

chunksizes shows the largest chunk size. chunks shows the sizes of all chunks along all dims, better if you have irregular chunks

dc.chunksizes
ValueError: Object has inconsistent chunks along dimension y. This can be fixed by calling unify_chunks().

As suggested in the error message, apply the unify_chunks() method:

dc = dc.unify_chunks()

Great, that worked. Now we can see the chunk sizes of the dataset:

dc.chunksizes
Frozen({'mid_date': (32736, 15156), 'y': (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 13), 'x': (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 13)})

Note

Setting the dask chunksize to auto at the xr.open_dataset() step will use chunk sizes that most closely resemble the structure of the underlying data. To avoid imposing a chunk size that isn’t a good fit for the data, avoid re-chunking until we have selected a subset of our area of interest from the larger dataset

Check CRS of xr object:

dc.attrs['projection']
'32646'

Let’s take a look at the time dimension (mid_date here). To start with we’ll just print the first 10 values:

for element in range(10):
    
    print(dc.mid_date[element].data)
2022-06-07T04:21:44.211208960
2018-04-14T04:18:49.171219968
2017-02-10T16:15:50.660901120
2022-04-03T04:19:01.211214080
2021-07-22T04:16:46.210427904
2019-03-15T04:15:44.180925952
2002-09-15T03:59:12.379172096
2002-12-28T03:42:16.181281024
2021-06-29T16:16:10.210323968
2022-03-26T16:18:35.211123968

It doesn’t look like the time dimension is in chronological order, let’s fix that:

Note

The following cell is commented out because it produces an error and usually leads to a dead kernel. Let’s try to troubleshoot this below. {add image of error (in screenshots)}

dc_timesorted = dc.sortby(dc['mid_date'])

Note: work-around for situation where above cell produces error#

Note

In some test cases, the above cell triggered the following error. While the current version runs fine, I’m including a work around in the following cells in case you encounter this error as well. If you don’t, feel free to skip ahead to the next sub-section heading{add image of error (in screenshots)}

Let’s follow some internet advice and try to fix this issue. We will actually start over from the very beginning and read in the dataset using only xarray and not dask.

dc_new = xr.open_dataset(url, engine='zarr')

Now we have an xr.Dataset that is built on numpy arrays rather than dask arrays, which means we can re-index along the time dimension using xarray’s ‘lazy’ functionality:

dc_new_timesorted = dc_new.sortby(dc_new['mid_date'])
for element in range(10):
    
    print(dc_new_timesorted.mid_date[element].data)
1986-09-11T03:31:15.003252992
1986-10-05T03:31:06.144750016
1986-10-21T03:31:34.493249984
1986-11-22T03:29:27.023556992
1986-11-30T03:29:08.710132992
1986-12-08T03:29:55.372057024
1986-12-08T03:33:17.095283968
1986-12-16T03:30:10.645544000
1986-12-24T03:29:52.332120960
1987-01-09T03:30:01.787228992

Great, much easier. Now, we will chunk the dataset.

dc_new_timesorted = dc_new_timesorted.chunk()
dc_new_timesorted.chunks
Frozen({'mid_date': (47892,), 'y': (833,), 'x': (833,)})
dc_new_timesorted
<xarray.Dataset> Size: 1TB
Dimensions:                     (mid_date: 47892, y: 833, x: 833)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 383kB 1986-09-11T03...
  * x                           (x) float64 7kB 7.001e+05 7.003e+05 ... 8e+05
  * y                           (y) float64 7kB 3.4e+06 3.4e+06 ... 3.3e+06
Data variables: (12/60)
    M11                         (mid_date, y, x) float32 133GB dask.array<chunksize=(47892, 833, 833), meta=np.ndarray>
    M11_dr_to_vr_factor         (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    M12                         (mid_date, y, x) float32 133GB dask.array<chunksize=(47892, 833, 833), meta=np.ndarray>
    M12_dr_to_vr_factor         (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    acquisition_date_img1       (mid_date) datetime64[ns] 383kB dask.array<chunksize=(47892,), meta=np.ndarray>
    acquisition_date_img2       (mid_date) datetime64[ns] 383kB dask.array<chunksize=(47892,), meta=np.ndarray>
    ...                          ...
    vy_error_modeled            (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_error_slow               (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_error_stationary         (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_stable_shift             (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_stable_shift_slow        (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
    vy_stable_shift_stationary  (mid_date) float32 192kB dask.array<chunksize=(47892,), meta=np.ndarray>
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

You can see in the above object that while we technically now have a ‘chunked dataset’, the entire object is

chunking_dict = dc.chunksizes
chunking_dict
Frozen({'mid_date': (32736, 15156), 'y': (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 13), 'x': (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 13)})
dc_rechunk = dc_new.chunk(chunking_dict)
dc_rechunk.chunks
Frozen({'mid_date': (32736, 15156), 'y': (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 13), 'x': (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 13)})

Great, now we have our ITS_LIVE dataset, organized by time and with appropriate chunking. Let’s move on and read in vector data describing some physical features we’d like to examine with the ITS_LIVE dataset.

Incorporating glacier outlines (vector data)#

Vector data represent discrete features. They contain geometry data as well as attribute data about the features. For a more in-depth description of vector data, read this. We will use vector data to focus our analysis on specific glaciers. The dataset we will be using is called the Randolph Glacier Inventory (RGI). It is a very important dataset for glaciology research; you can read more about it here.

Read in vector data#

We will read in just one region of the RGI (region 15, SouthAsiaEast). RGI data is downloaded in lat/lon coordinates. We will project it to match the coordinate reference system (CRS) of the ITS_LIVE dataset and then select an individual glacier to begin our analysis. ITS_LIVE data is in the Universal Transverse Mercator (UTM) coordinate system, and each datacube is projected to the UTM zone specific to its location. You can read more about these concepts here.

se_asia = gpd.read_parquet('rgi7_region15_south_asia_east.parquet')

Handling projections#

Check the projection of the ITS_LIVE dataset.

dc.attrs['projection']
'32646'

This means the data is projected to UTM zone 46N.

#project rgi data to match itslive
#we know the epsg from looking at the 'spatial epsg' attr of the mapping var of the dc object
se_asia_prj = se_asia.to_crs(f'EPSG:{dc.attrs["projection"]}') 
se_asia_prj.head(3)
rgi_id o1region o2region glims_id anlys_id subm_id src_date cenlon cenlat utm_zone ... zmin_m zmax_m zmed_m zmean_m slope_deg aspect_deg aspect_sec dem_source lmax_m geometry
0 RGI2000-v7.0-G-15-00001 15 15-01 G078088E31398N 866850 752 2002-07-10T00:00:00 78.087891 31.398046 44 ... 4662.2950 4699.2095 4669.4720 4671.4253 13.427070 122.267290 4 COPDEM30 173 POLYGON Z ((-924868.476 3571663.111 0, -924875...
1 RGI2000-v7.0-G-15-00002 15 15-01 G078125E31399N 867227 752 2002-07-10T00:00:00 78.123699 31.397796 44 ... 4453.3584 4705.9920 4570.9473 4571.2770 22.822983 269.669144 7 COPDEM30 1113 POLYGON Z ((-921270.161 3571706.471 0, -921270...
2 RGI2000-v7.0-G-15-00003 15 15-01 G078128E31390N 867273 752 2000-08-05T00:00:00 78.128510 31.390287 44 ... 4791.7593 4858.6807 4832.1836 4827.6700 15.626262 212.719681 6 COPDEM30 327 POLYGON Z ((-921061.745 3570342.665 0, -921062...

3 rows × 29 columns

len(se_asia_prj)
18587

Crop RGI to ITS_LIVE extent#

Now we have a raster object (the ITS_LIVE dataset) and a vector dataset containing many (18,587!) features, which in this case are individual glacier outlines. We first want to crop the vector dataset by the extent of the raster dataset so that we can look only at the glaciers that are covered by the velocity data. In the first notebook, accessing_s3_data, we defined a function to create a vector object that describes the footprint of a raster object. Instead of defining it again here we can call it from the itslivetools script that we imported at the beginning of this notebook.

#first, get vector bbox of itslive
bbox_dc = itslivetools.get_bounds_polygon(dc)
bbox_dc['geometry']
0    POLYGON ((700132.5 3300067.5, 799972.5 3300067...
Name: geometry, dtype: geometry

The CRS of the dc and bbox_dc objects should be the same but its a good idea to check.

#first check the projection of dc. Notice that it is stored in the attributes of the dc object
dc.attrs['projection']
'32646'
#then check the crs of bbox_dc. Do this by accessing the crs attribute of the bbox_dc object
bbox_dc.crs
<Projected CRS: EPSG:32646>
Name: WGS 84 / UTM zone 46N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: Between 90°E and 96°E, northern hemisphere between equator and 84°N, onshore and offshore. Bangladesh. Bhutan. China. Indonesia. Mongolia. Myanmar (Burma). Russian Federation.
- bounds: (90.0, 0.0, 96.0, 84.0)
Coordinate Operation:
- name: UTM zone 46N
- method: Transverse Mercator
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich

If they weren’t the same, you could use the code that is commented out below to reproject the bbox_dc object to match dc.

#project from latlon to local utm 
#bbox_dc = bbox_dc.to_crs(f'EPSG:{dc.attrs["projection"]}')
#bbox_dc
#plot the outline of the itslive granule and the rgi dataframe together
fig, ax = plt.subplots()

bbox_dc.plot(ax=ax, facecolor='None', color='red')
se_asia_prj.plot(ax=ax, facecolor='None')
<Axes: >
_images/77b3abfd41352b87b42a64dfcec3c6a679fa7b3be2eef61b9aef4db0d97a5732.png

The plot above shows the coverage of the vector dataset, in black, relative to the extent of the raster dataset, in red. We will use the geopandas .clip() method to subset clip the RGI object (se_asia_prj) by the bbox_dc object which represents the footprint of the raster data cube.

#subset rgi to bounds 
se_asia_subset = gpd.clip(se_asia_prj, bbox_dc)
se_asia_subset.head()
rgi_id o1region o2region glims_id anlys_id subm_id src_date cenlon cenlat utm_zone ... zmin_m zmax_m zmed_m zmean_m slope_deg aspect_deg aspect_sec dem_source lmax_m geometry
16373 RGI2000-v7.0-G-15-16374 15 15-03 G095930E29817N 930178 752 2005-09-08T00:00:00 95.929916 29.817003 46 ... 4985.7314 5274.0435 5142.7660 5148.8170 27.024134 139.048110 4 COPDEM30 756 POLYGON Z ((783110.719 3302487.481 0, 783148.4...
16374 RGI2000-v7.0-G-15-16375 15 15-03 G095925E29818N 930160 752 2005-09-08T00:00:00 95.925181 29.818399 46 ... 4856.2790 5054.9253 4929.5560 4933.6890 44.126980 211.518448 6 COPDEM30 366 POLYGON Z ((782511.36 3302381.154 0, 782534.76...
16376 RGI2000-v7.0-G-15-16377 15 15-03 G095915E29820N 930107 752 2005-09-08T00:00:00 95.914583 29.819510 46 ... 5072.8910 5150.6196 5108.5020 5111.7217 23.980000 219.341537 6 COPDEM30 170 POLYGON Z ((781619.822 3302305.074 0, 781613.5...
16371 RGI2000-v7.0-G-15-16372 15 15-03 G095936E29819N 930215 752 2005-09-08T00:00:00 95.935554 29.819123 46 ... 4838.7646 5194.8840 5001.5117 4992.3706 25.684517 128.737870 4 COPDEM30 931 POLYGON Z ((783420.055 3302493.804 0, 783444.1...
15879 RGI2000-v7.0-G-15-15880 15 15-03 G095459E29807N 928789 752 1999-07-29T00:00:00 95.459374 29.807181 46 ... 3802.1846 4155.1255 4000.2695 4000.4404 28.155806 116.148640 4 COPDEM30 776 POLYGON Z ((737667.211 3300277.169 0, 737702.8...

5 rows × 29 columns

We can use the geopandas .explore() method to take a look at the RGI dataset:

se_asia_subset.explore()
/home/runner/micromamba/envs/itslive_tutorial_env/lib/python3.13/site-packages/folium/features.py:1173: UserWarning: GeoJsonTooltip is not configured to render for GeoJson GeometryCollection geometries. Please consider reworking these features: [{'rgi_id': 'RGI2000-v7.0-G-15-16433', 'o1region': '15', 'o2region': '15-03', 'glims_id': 'G095721E29941N', 'anlys_id': 929520, 'subm_id': 752, 'src_date': '2005-09-08T00:00:00', 'cenlon': 95.7211016152286, 'cenlat': 29.940902187781784, 'utm_zone': 46, 'area_km2': 0.340954350813452, 'primeclass': 0, 'conn_lvl': 0, 'surge_type': 0, 'term_type': 9, 'glac_name': None, 'is_rgi6': 0, 'termlon': 95.72222864596793, 'termlat': 29.937137080413784, 'zmin_m': 4657.792, 'zmax_m': 5049.5625, 'zmed_m': 4825.1104, 'zmean_m': 4839.4185, 'slope_deg': 23.704372, 'aspect_deg': 145.20973, 'aspect_sec': 4, 'dem_source': 'COPDEM30', 'lmax_m': 891}, {'rgi_id': 'RGI2000-v7.0-G-15-12194', 'o1region': '15', 'o2region': '15-03', 'glims_id': 'G095869E30315N', 'anlys_id': 929951, 'subm_id': 752, 'src_date': '2005-09-08T00:00:00', 'cenlon': 95.86889789565677, 'cenlat': 30.3147685, 'utm_zone': 46, 'area_km2': 8.797406997273084, 'primeclass': 0, 'conn_lvl': 0, 'surge_type': 0, 'term_type': 9, 'glac_name': None, 'is_rgi6': 0, 'termlon': 95.89518363763428, 'termlat': 30.307036248571297, 'zmin_m': 4642.1445, 'zmax_m': 5278.752, 'zmed_m': 5011.06, 'zmean_m': 4993.9243, 'slope_deg': 12.372513, 'aspect_deg': 81.418945, 'aspect_sec': 3, 'dem_source': 'COPDEM30', 'lmax_m': 4994}, {'rgi_id': 'RGI2000-v7.0-G-15-11941', 'o1region': '15', 'o2region': '15-03', 'glims_id': 'G095301E30377N', 'anlys_id': 928228, 'subm_id': 752, 'src_date': '2007-08-20T00:00:00', 'cenlon': 95.30071978915663, 'cenlat': 30.3770025, 'utm_zone': 46, 'area_km2': 0.267701958906151, 'primeclass': 0, 'conn_lvl': 0, 'surge_type': 0, 'term_type': 9, 'glac_name': None, 'is_rgi6': 0, 'termlon': 95.30345982475616, 'termlat': 30.380097687364806, 'zmin_m': 5475.784, 'zmax_m': 5977.979, 'zmed_m': 5750.727, 'zmean_m': 5759.621, 'slope_deg': 41.069595, 'aspect_deg': 350.3331518173218, 'aspect_sec': 1, 'dem_source': 'COPDEM30', 'lmax_m': 807}] to MultiPolygon for full functionality.
https://tools.ietf.org/html/rfc7946#page-9
  warnings.warn(
Make this Notebook Trusted to load map: File -> Trust Notebook

Handling different geometry types#

Oops, it looks like we’re getting a warning on the explore() method. It looks like this is interfering with the functionality that displays feature info when you hover over a feature. Let’s dig into it and see what’s going on. It looks like the issue is being caused by rows of the GeoDataFrame object that have a ‘GeometryCollection’ geometry type. First, I’m going to copy the warning into a cell below. The warning is already in the form of a list of dictionaries, which makes it nice to work with:

Here is the error message separated from the problem geometries:

/home/../python3.11/site-packages/folium/features.py:1102: UserWarning: GeoJsonTooltip is not configured to render for GeoJson GeometryCollection geometries. Please consider reworking these features: ….. to MultiPolygon for full functionality.

And below are the problem geometries identified in the error message saved as a list of dictionaries:

problem_geoms = [{'rgi_id': 'RGI2000-v7.0-G-15-16433', 'o1region': '15', 'o2region': '15-03', 'glims_id': 'G095721E29941N', 'anlys_id': 929520, 'subm_id': 752, 'src_date': '2005-09-08T00:00:00', 'cenlon': 95.7211016152286, 'cenlat': 29.940902187781784, 'utm_zone': 46, 'area_km2': 0.340954350813452, 'primeclass': 0, 'conn_lvl': 0, 'surge_type': 0, 'term_type': 9, 'glac_name': None, 'is_rgi6': 0, 'termlon': 95.72222864596793, 'termlat': 29.937137080413784, 'zmin_m': 4657.792, 'zmax_m': 5049.5625, 'zmed_m': 4825.1104, 'zmean_m': 4839.4185, 'slope_deg': 23.704372, 'aspect_deg': 145.20973, 'aspect_sec': 4, 'dem_source': 'COPDEM30', 'lmax_m': 891}, 
                 {'rgi_id': 'RGI2000-v7.0-G-15-12194', 'o1region': '15', 'o2region': '15-03', 'glims_id': 'G095869E30315N', 'anlys_id': 929951, 'subm_id': 752, 'src_date': '2005-09-08T00:00:00', 'cenlon': 95.86889789565677, 'cenlat': 30.3147685, 'utm_zone': 46, 'area_km2': 8.797406997273084, 'primeclass': 0, 'conn_lvl': 0, 'surge_type': 0, 'term_type': 9, 'glac_name': None, 'is_rgi6': 0, 'termlon': 95.89518363763428, 'termlat': 30.307036248571297, 'zmin_m': 4642.1445, 'zmax_m': 5278.752, 'zmed_m': 5011.06, 'zmean_m': 4993.9243, 'slope_deg': 12.372513, 'aspect_deg': 81.418945, 'aspect_sec': 3, 'dem_source': 'COPDEM30', 'lmax_m': 4994},
                 {'rgi_id': 'RGI2000-v7.0-G-15-11941', 'o1region': '15', 'o2region': '15-03', 'glims_id': 'G095301E30377N', 'anlys_id': 928228, 'subm_id': 752, 'src_date': '2007-08-20T00:00:00', 'cenlon': 95.30071978915663, 'cenlat': 30.3770025, 'utm_zone': 46, 'area_km2': 0.267701958906151, 'primeclass': 0, 'conn_lvl': 0, 'surge_type': 0, 'term_type': 9, 'glac_name': None, 'is_rgi6': 0, 'termlon': 95.30345982475616, 'termlat': 30.380097687364806, 'zmin_m': 5475.784, 'zmax_m': 5977.979, 'zmed_m': 5750.727, 'zmean_m': 5759.621, 'slope_deg': 41.069595, 'aspect_deg': 350.3331518173218, 'aspect_sec': 1, 'dem_source': 'COPDEM30', 'lmax_m': 807}] 

First, I’ll convert the problem_geoms object from a list of dictionary objects to a pandas.DataFrame object

problem_geoms_df = pd.DataFrame(data=problem_geoms)

Then make a list of the IDs of the glaciers in this dataframe:

problem_geom_ids = problem_geoms_df['glims_id'].to_list()
problem_geom_ids
['G095721E29941N', 'G095869E30315N', 'G095301E30377N']

We’ll make a geopandas.GeoDataFrame object that is just the above-identified outlines:

problem_geoms_gdf = se_asia_subset.loc[se_asia_subset['glims_id'].isin(problem_geom_ids)]

Now, let’s check the geometry-type of these outlines and compare them to another outline from the se_asia_subset object that wasn’t flagged:

problem_geoms_gdf.loc[problem_geoms_gdf['glims_id'] == 'G095301E30377N'].geom_type
11940    GeometryCollection
dtype: object
se_asia_subset.loc[se_asia_subset['rgi_id'] == 'RGI2000-v7.0-G-15-11754'].geom_type
11753    Polygon
dtype: object

Now the warning from calling geopandas.GeoDataFrame.explore() makes more sense. Most features in se_asia_subset have geom_type = Polygon but the flagged features have geom_type= GeometryCollection. Let’s dig a bit more into these flagged geometries. To do this, we can use the geopandas method explode() to split multiple geometries into multiple single geometries.

first_flagged_feature = problem_geoms_gdf[problem_geoms_gdf.glims_id == 'G095301E30377N'].geometry.explode(index_parts=True)

Printing this object shows that it actually contains a polygon geometry and a linestring geometry:

first_flagged_feature
11940  0    POLYGON Z ((721543.154 3362894.92 0, 721530.34...
       1    LINESTRING Z (721119.337 3362535.315 0, 721119...
Name: geometry, dtype: geometry

Let’s look at the other two:

second_flagged_feature = problem_geoms_gdf[problem_geoms_gdf.glims_id == 'G095869E30315N'].geometry.explode(index_parts=True)
second_flagged_feature
12193  0    POLYGON Z ((774975.604 3356334.67 0, 774983.91...
       1    LINESTRING Z (776713.643 3359150.691 0, 776713...
Name: geometry, dtype: geometry
third_flagged_feature = problem_geoms_gdf[problem_geoms_gdf.glims_id == 'G095721E29941N'].geometry.explode(index_parts=True)
third_flagged_feature
16432  0    POLYGON Z ((762550.755 3315675.227 0, 762550.8...
       1    LINESTRING Z (762974.041 3315372.04 0, 762974....
Name: geometry, dtype: geometry

Let’s look at some properties of the line geometry objects like length:

print(third_flagged_feature[1:].length.iloc[0])
print(second_flagged_feature[1:].length.iloc[0])
print(third_flagged_feature[1:].length.iloc[0])
0.07253059141477144
0.07953751551272183
0.07253059141477144

It looks like all of the linestring objects are very small, possibly artifacts, and don’t need to remain in the dataset. For simplicity, we can remove them from the original object. There are different ways to do this, but here’s one approach:

  1. Identify and remove all features with the GeometryCollection geom_type:

se_asia_subset_polygon = se_asia_subset[~se_asia_subset['geometry'].apply(lambda x : x.geom_type=='GeometryCollection' )]
  1. Remove the line geometries from the GeometryCollection features:

se_asia_subset_geom_collection = se_asia_subset[se_asia_subset['geometry'].apply(lambda x : x.geom_type=='GeometryCollection' )]
  1. Make an object that is just the features where geom_type = Polygon:

keep_polygons = se_asia_subset_geom_collection.explode(index_parts=True).loc[se_asia_subset_geom_collection.explode(index_parts=True).geom_type == 'Polygon']
  1. Append the polygons to the se_asia_subset_polygons object:

se_asia_polygons = pd.concat([se_asia_subset_polygon,keep_polygons])

As a sanity check, let’s make sure that we didn’t lose any glacier outline features during all of that:

len(se_asia_subset['rgi_id']) == len(se_asia_polygons)
True

Great, we know that we have the same number of glaciers that we started with.

Now, let’s try visualizing the outlines with explore() again and seeing if the hover tools work:

se_asia_polygons.explore()
Make this Notebook Trusted to load map: File -> Trust Notebook

We can use the above interactive map to select a glacier to look at in more detail below.

Select a single glacier#

We’ll choose a single glacier to work with for now:

sample_glacier_vec = se_asia_subset.loc[se_asia_subset['rgi_id'] == 'RGI2000-v7.0-G-15-16257']
sample_glacier_vec
rgi_id o1region o2region glims_id anlys_id subm_id src_date cenlon cenlat utm_zone ... zmin_m zmax_m zmed_m zmean_m slope_deg aspect_deg aspect_sec dem_source lmax_m geometry
16256 RGI2000-v7.0-G-15-16257 15 15-03 G095962E29920N 930314 752 2005-09-08T00:00:00 95.961972 29.920094 46 ... 4320.7065 5937.84 5179.605 5131.8877 22.803406 100.811325 3 COPDEM30 5958 POLYGON Z ((788176.951 3315860.842 0, 788219.8...

1 rows × 29 columns

Clip raster data using vector object#

Here we will subset the full ITS_LIVE granule to the extent of an individual glacier.

First, we need to use rio.write_crs() to assign a CRS to the itslive object. If we don’t do that first the rio.clip() command will produce an error

Note: you can only run write_crs() once, because it switches mapping from being a data_var to a coord so if you run it again it will produce a key error looking for a var that doesn’t exist

dc = dc.rio.write_crs(f"epsg:{dc.attrs['projection']}", inplace=True)
%%time

sample_glacier_raster = dc.rio.clip(sample_glacier_vec.geometry, sample_glacier_vec.crs)
CPU times: user 1.17 s, sys: 11 ms, total: 1.18 s
Wall time: 1.18 s

Working with clipped raster velocity data#

sample_glacier_raster
<xarray.Dataset> Size: 3GB
Dimensions:                     (mid_date: 47892, x: 40, y: 37)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 383kB 2022-06-07T04...
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 284MB dask.array<chunksize=(32736, 19, 19), meta=np.ndarray>
    M11_dr_to_vr_factor         (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
    M12                         (mid_date, y, x) float32 284MB dask.array<chunksize=(32736, 19, 19), meta=np.ndarray>
    M12_dr_to_vr_factor         (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
    acquisition_date_img1       (mid_date) datetime64[ns] 383kB dask.array<chunksize=(32736,), meta=np.ndarray>
    acquisition_date_img2       (mid_date) datetime64[ns] 383kB dask.array<chunksize=(32736,), meta=np.ndarray>
    ...                          ...
    vy_error_modeled            (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
    vy_error_slow               (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
    vy_error_stationary         (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
    vy_stable_shift             (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
    vy_stable_shift_slow        (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
    vy_stable_shift_stationary  (mid_date) float32 192kB dask.array<chunksize=(32736,), meta=np.ndarray>
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

Take a look at the clipped object:

sample_glacier_raster.mid_date
<xarray.DataArray 'mid_date' (mid_date: 47892)> Size: 383kB
array(['2022-06-07T04:21:44.211208960', '2018-04-14T04:18:49.171219968',
       '2017-02-10T16:15:50.660901120', ..., '2024-01-23T04:18:19.231119104',
       '2023-06-01T04:10:44.893907968', '2023-09-02T16:18:20.230413056'],
      shape=(47892,), dtype='datetime64[ns]')
Coordinates:
  * mid_date     (mid_date) datetime64[ns] 383kB 2022-06-07T04:21:44.21120896...
    spatial_ref  int64 8B 0
    mapping      int64 8B 0
Attributes:
    description:    midpoint of image 1 and image 2 acquisition date and time...
    standard_name:  image_pair_center_date_with_time_separation

We will work with a 4-year subset of the time series.

sample_glacier_raster = sample_glacier_raster.where(sample_glacier_raster.mid_date.dt.year > 2016, drop=True)
sample_glacier_raster = sample_glacier_raster.where(sample_glacier_raster.mid_date.dt.year < 2020, drop=True)

What satellite sensors are represented in this time series subset?

set(sample_glacier_raster.satellite_img1.values)
{'1A', '2A', '2B', '7', '8'}

Next we want to perform some computations that require us to load this object into memory. To do this we will use the dask .compute() method, which turns a ‘lazy’ object into an in-memory object. If you try to run compute on too large of an object, your computer may run out of RAM and the kernel being used in this python session will die (if this happens, click ‘restart kernel’ from the kernel drop down menu above).

sample_glacier_raster = sample_glacier_raster.compute()
sample_glacier_raster
<xarray.Dataset> Size: 307MB
Dimensions:                     (mid_date: 3974, y: 37, x: 40)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 32kB 2018-04-14T04:...
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 24MB nan nan ... nan
    M11_dr_to_vr_factor         (mid_date) float32 16kB nan nan nan ... nan nan
    M12                         (mid_date, y, x) float32 24MB nan nan ... nan
    M12_dr_to_vr_factor         (mid_date) float32 16kB nan nan nan ... nan nan
    acquisition_date_img1       (mid_date) datetime64[ns] 32kB 2017-12-20T04:...
    acquisition_date_img2       (mid_date) datetime64[ns] 32kB 2018-08-07T04:...
    ...                          ...
    vy_error_modeled            (mid_date) float32 16kB 40.5 28.6 ... 97.0 166.2
    vy_error_slow               (mid_date) float32 16kB 8.0 1.7 ... 11.3 25.4
    vy_error_stationary         (mid_date) float32 16kB 8.0 1.7 ... 11.3 25.4
    vy_stable_shift             (mid_date) float32 16kB 8.9 -4.9 ... -3.6 -10.8
    vy_stable_shift_slow        (mid_date) float32 16kB 8.9 -4.9 ... -3.6 -10.7
    vy_stable_shift_stationary  (mid_date) float32 16kB 8.9 -4.9 ... -3.6 -10.8
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

Visualizing data#

You can plot the velocity data (a raster object, type = xr.Dataset) and the glacier outline (a vector object, type=gpd.GeoDataFrame) on top of one another in the same figure.

A simple reduction#

To start with and for the sake of easy visualizing we will take the mean of the magnitude of velocity variable along the mid_date dimension:

sample_glacier_raster_timemean = sample_glacier_raster.mean(dim='mid_date')
sample_glacier_raster_timemean #now object is 2d
<xarray.Dataset> Size: 78kB
Dimensions:                     (y: 37, x: 40)
Coordinates:
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/48)
    M11                         (y, x) float32 6kB nan nan nan ... nan nan nan
    M11_dr_to_vr_factor         float32 4B nan
    M12                         (y, x) float32 6kB nan nan nan ... nan nan nan
    M12_dr_to_vr_factor         float32 4B nan
    chip_size_height            (y, x) float32 6kB nan nan nan ... nan nan nan
    chip_size_width             (y, x) float32 6kB nan nan nan ... nan nan nan
    ...                          ...
    vy_error_modeled            float32 4B 108.3
    vy_error_slow               float32 4B 14.55
    vy_error_stationary         float32 4B 14.55
    vy_stable_shift             float32 4B 0.6379
    vy_stable_shift_slow        float32 4B 0.6373
    vy_stable_shift_stationary  float32 4B 0.6379

Note

To avoid propagating noise in the dataset, one can first perform the reduction (mean along time dimension), and then calculate the magnitude of velocity off of the reduced x and y-components of velocity

fig, ax = plt.subplots(figsize=(15,9))

sample_glacier_vec.plot(ax=ax, facecolor='none', edgecolor='red')
a = np.sqrt(sample_glacier_raster_timemean.vx**2 + sample_glacier_raster_timemean.vy**2).plot(ax=ax, alpha=0.6)
a.colorbar.set_label('meter/year')
ax.set_title('Glacier outline (red) and mean magnitude of velocity, 2016-2020');
_images/e73c272852f530a5f91203c37d972cc0a0b91acd6d52c4ed118dff5953e42ab9.png

Now let’s take a look at the x and y components of velocity, again averaging over time:

fig, axs = plt.subplots(ncols =2, figsize=(17,7))

x = sample_glacier_raster.vx.mean(dim='mid_date').plot(ax=axs[0])
y = sample_glacier_raster.vy.mean(dim='mid_date').plot(ax=axs[1])
axs[0].set_title('x-component velocity')
axs[1].set_title('y-component velocity')
fig.suptitle('Temporal mean of velocity components')

x.colorbar.set_label('m/y', rotation=270)
y.colorbar.set_label('m/yr', rotation=270);
_images/ef00edc9a01269c57ef3e28bec2bd4cf9faf066512f58dda877fa752b2f780d7.png

We can also plot the estimated error associated with the magnitude of velocity variable, which is included in the dataset

sample_glacier_raster.v_error.mean(dim=['mid_date']).plot();
_images/adf2010714f6e9c0374fc6ae26e22bdd1b9b08e4f0150c6c5713d1af49fe9ac8.png

v_error is large relative to the velocity vectors, suggesting that this data could be pretty noisy.

Next we will visualize the velocity vectors.

fig, (ax,ax1)= plt.subplots(ncols=2, figsize=(20,9))

sample_glacier_vec.plot(ax=ax, facecolor='none', edgecolor='red')
sample_glacier_raster_timemean.plot.quiver('x','y','vx','vy', ax=ax, angles='xy', vmax=45, vmin=5, scale_units='xy', scale=1)

sample_glacier_vec.plot(ax=ax1, facecolor='none', edgecolor='red')
a = np.sqrt(sample_glacier_raster_timemean.vx**2 + sample_glacier_raster_timemean.vy**2).plot(ax=ax1, alpha=0.6, vmax=45, vmin=5)
a.colorbar.set_label('meter/year')
ax1.set_title('Glacier outline (red) and mean magnitude of velocity, 2016-2020');
_images/6315492395759f31752e3227884621885f0af27a6ddbb9d93920d4d885b01f21.png

In this quiver plot, the units scale is set so that the horizontal and vertical components of velocity have the same units as the x and y dimensions (meters). This obscures a lot of the variability so we will replot the vectors letting the length be scaled based on average vector length

fig, (ax,ax1)= plt.subplots(ncols=2, figsize=(20,9))

sample_glacier_vec.plot(ax=ax, facecolor='none', edgecolor='red')
sample_glacier_raster_timemean.plot.quiver('x','y','vx','vy', ax=ax, angles='xy', vmax=45, vmin=5)

sample_glacier_vec.plot(ax=ax1, facecolor='none', edgecolor='red')
a = np.sqrt(sample_glacier_raster_timemean.vx**2 + sample_glacier_raster_timemean.vy**2).plot(ax=ax1, alpha=0.6)#, vmax=45, vmin=5)
a.colorbar.set_label('meter/year')
ax1.set_title('Glacier outline (red) and mean magnitude of velocity, 2016-2020');
_images/3b780a8ea04f28b1c24ddde9a4eb3cfc4d3b9ad644c0b29cec80b9fdd7baf2d8.png

Now we can see more of the variability that aligns better with the calculated magnitude of velocity.

Exploring ITS_LIVE data#

ITS_LIVE data cubes come with many variables that carry information about the estimated surface velocities and the satellite images that were used to generate the surface velocity estimates. We won’t examine all of this information here but let’s look at a little bit.

To start with, let’s look at the satellite imagery used to generate the velocity data.

We see that we have two data_vars that indicate which sensor that each image in the image pair at a certain time step comes from.

sample_glacier_raster.satellite_img2
<xarray.DataArray 'satellite_img2' (mid_date: 3974)> Size: 32kB
array(['2B', '2B', '2B', ..., '8', '8', '7'], shape=(3974,), dtype=object)
Coordinates:
  * mid_date     (mid_date) datetime64[ns] 32kB 2018-04-14T04:18:49.171219968...
    spatial_ref  int64 8B 0
    mapping      int64 8B 0
Attributes:
    description:    id of the satellite that acquired image 2
    standard_name:  image2_satellite

The satellite_img1 and satellite_img2 variables are 1-dimensional numpy arrays corresponding to the length of the mid_date dimension of the data cube. You can see that each element of the array is a string corresponding to a different satellite: 1A = Sentinel 1A, 1B = Sentinel 1B, 2A = Sentinel 2A 2B = Sentinel 2B, 7 = Landsat7, 8 = Landsat8

Examining velocity data from each satellite in ITS_LIVE dataset#

What if we only wanted to look at the velocity estimates from Landsat8?

l8_data = sample_glacier_raster.where(sample_glacier_raster['satellite_img1'] == '8', drop=True)
l8_data
<xarray.Dataset> Size: 51MB
Dimensions:                     (mid_date: 662, y: 37, x: 40)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 5kB 2017-12-25T04:1...
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 4MB nan nan ... nan nan
    M11_dr_to_vr_factor         (mid_date) float32 3kB nan nan nan ... nan nan
    M12                         (mid_date, y, x) float32 4MB nan nan ... nan nan
    M12_dr_to_vr_factor         (mid_date) float32 3kB nan nan nan ... nan nan
    acquisition_date_img1       (mid_date) datetime64[ns] 5kB 2017-12-21T04:1...
    acquisition_date_img2       (mid_date) datetime64[ns] 5kB 2017-12-29T04:1...
    ...                          ...
    vy_error_modeled            (mid_date) float32 3kB 1.163e+03 232.7 ... 166.2
    vy_error_slow               (mid_date) float32 3kB 112.5 37.6 ... 11.3 25.4
    vy_error_stationary         (mid_date) float32 3kB 112.5 37.6 ... 11.3 25.4
    vy_stable_shift             (mid_date) float32 3kB -74.2 -25.7 ... -10.8
    vy_stable_shift_slow        (mid_date) float32 3kB -73.8 -25.7 ... -10.7
    vy_stable_shift_stationary  (mid_date) float32 3kB -74.2 -25.7 ... -10.8
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

dataset.where() at first seems appropriate to use for kind of operation but there’s actually an easier way. Because we are selecting along a single dimension (mid_date), we can use xarray’s .sel() method instead. This is more efficient and integrates with dask arrays more smoothly.

l8_condition = sample_glacier_raster.satellite_img1 == '8'
l8_subset = sample_glacier_raster.sel(mid_date=l8_condition)
l8_subset
<xarray.Dataset> Size: 51MB
Dimensions:                     (mid_date: 662, y: 37, x: 40)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 5kB 2017-12-25T04:1...
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 4MB nan nan ... nan nan
    M11_dr_to_vr_factor         (mid_date) float32 3kB nan nan nan ... nan nan
    M12                         (mid_date, y, x) float32 4MB nan nan ... nan nan
    M12_dr_to_vr_factor         (mid_date) float32 3kB nan nan nan ... nan nan
    acquisition_date_img1       (mid_date) datetime64[ns] 5kB 2017-12-21T04:1...
    acquisition_date_img2       (mid_date) datetime64[ns] 5kB 2017-12-29T04:1...
    ...                          ...
    vy_error_modeled            (mid_date) float32 3kB 1.163e+03 232.7 ... 166.2
    vy_error_slow               (mid_date) float32 3kB 112.5 37.6 ... 11.3 25.4
    vy_error_stationary         (mid_date) float32 3kB 112.5 37.6 ... 11.3 25.4
    vy_stable_shift             (mid_date) float32 3kB -74.2 -25.7 ... -10.8
    vy_stable_shift_slow        (mid_date) float32 3kB -73.8 -25.7 ... -10.7
    vy_stable_shift_stationary  (mid_date) float32 3kB -74.2 -25.7 ... -10.8
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...

Let’s take a look at the average speeds of the Landsat8-derived velocities:

fig, ax = plt.subplots()
l8_mean = np.sqrt(l8_subset.vx.mean(dim='mid_date')**2 + (l8_subset.vy.mean(dim='mid_date')**2))
a = l8_mean.plot(ax=ax)
a.colorbar.set_label('meters/year')
ax.set_title('Mean velocity magnitude over time');
_images/70f73df2072a844498e296781487fff124299e66ee77b2399b3a988e526de253.png

What about Landsat7?

l7_condition = sample_glacier_raster.satellite_img1 == '7'

l7_subset = sample_glacier_raster.sel(mid_date=l7_condition)
l7_subset
<xarray.Dataset> Size: 62MB
Dimensions:                     (mid_date: 803, y: 37, x: 40)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 6kB 2017-11-11T04:1...
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 5MB nan nan ... nan nan
    M11_dr_to_vr_factor         (mid_date) float32 3kB nan nan nan ... nan nan
    M12                         (mid_date, y, x) float32 5MB nan nan ... nan nan
    M12_dr_to_vr_factor         (mid_date) float32 3kB nan nan nan ... nan nan
    acquisition_date_img1       (mid_date) datetime64[ns] 6kB 2017-05-03T04:1...
    acquisition_date_img2       (mid_date) datetime64[ns] 6kB 2018-05-22T04:1...
    ...                          ...
    vy_error_modeled            (mid_date) float32 3kB 24.2 24.2 ... 46.5 46.5
    vy_error_slow               (mid_date) float32 3kB 4.3 5.0 3.4 ... 6.6 9.7
    vy_error_stationary         (mid_date) float32 3kB 4.3 5.0 3.4 ... 6.6 9.7
    vy_stable_shift             (mid_date) float32 3kB -0.3 3.2 ... 10.8 3.4
    vy_stable_shift_slow        (mid_date) float32 3kB -0.3 3.2 ... 10.8 3.4
    vy_stable_shift_stationary  (mid_date) float32 3kB -0.3 3.2 ... 10.8 3.4
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...
fig, ax = plt.subplots()

l7_mean = np.sqrt(l7_subset.vx.mean(dim='mid_date')**2 + (l7_subset.vy.mean(dim='mid_date')**2))
a = l7_mean.plot(ax=ax)
a.colorbar.set_label('meters/year')
fig.suptitle('Landsat 7 obs')
ax.set_title('Mean velocity magnitude over time');
_images/6c832f9a88d6e114edb3a1bdef10cc238e28e88f9b78821744468bee956c88f7.png

Let’s look at Sentinel 1 data. Note here we are selecting for 2 values instead of 1 using DataArray.isin

s1_condition = sample_glacier_raster.satellite_img1.isin(['1A','1B'])
s1_subset = sample_glacier_raster.sel(mid_date = s1_condition)
s1_subset
<xarray.Dataset> Size: 13MB
Dimensions:                     (mid_date: 167, y: 37, x: 40)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 1kB 2018-12-30T11:4...
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 989kB nan nan ... nan
    M11_dr_to_vr_factor         (mid_date) float32 668B nan nan nan ... nan nan
    M12                         (mid_date, y, x) float32 989kB nan nan ... nan
    M12_dr_to_vr_factor         (mid_date) float32 668B nan nan nan ... nan nan
    acquisition_date_img1       (mid_date) datetime64[ns] 1kB 2018-12-24T11:4...
    acquisition_date_img2       (mid_date) datetime64[ns] 1kB 2019-01-05T11:4...
    ...                          ...
    vy_error_modeled            (mid_date) float32 668B 53.7 53.7 ... 53.7 53.7
    vy_error_slow               (mid_date) float32 668B 55.8 48.2 ... 63.3 54.9
    vy_error_stationary         (mid_date) float32 668B 55.8 48.2 ... 63.3 54.9
    vy_stable_shift             (mid_date) float32 668B 0.0 -0.5 ... -0.2 0.0
    vy_stable_shift_slow        (mid_date) float32 668B 0.0 -0.5 ... -0.2 0.0
    vy_stable_shift_stationary  (mid_date) float32 668B 0.0 -0.5 ... -0.2 0.0
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...
fig, ax = plt.subplots()
s1_mean = np.sqrt(s1_subset.vx.mean(dim='mid_date')**2 + (s1_subset.vy.mean(dim='mid_date')**2))
a = s1_mean.plot(ax=ax)
a.colorbar.set_label('meters/year')
fig.suptitle('Sentinel 1 obs')
ax.set_title('Mean velocity magnitude over time');
_images/bf7885cbd9dffbb7af9ee321e8450d5292854772c1755949edffdc965bc3750f.png
s2_condition = sample_glacier_raster.satellite_img1.isin(['2A','2B'])
s2_subset = sample_glacier_raster.sel(mid_date=s2_condition)
s2_subset
<xarray.Dataset> Size: 181MB
Dimensions:                     (mid_date: 2342, y: 37, x: 40)
Coordinates:
  * mid_date                    (mid_date) datetime64[ns] 19kB 2018-04-14T04:...
  * x                           (x) float64 320B 7.843e+05 ... 7.889e+05
  * y                           (y) float64 296B 3.316e+06 ... 3.311e+06
    spatial_ref                 int64 8B 0
    mapping                     int64 8B 0
Data variables: (12/59)
    M11                         (mid_date, y, x) float32 14MB nan nan ... nan
    M11_dr_to_vr_factor         (mid_date) float32 9kB nan nan nan ... nan nan
    M12                         (mid_date, y, x) float32 14MB nan nan ... nan
    M12_dr_to_vr_factor         (mid_date) float32 9kB nan nan nan ... nan nan
    acquisition_date_img1       (mid_date) datetime64[ns] 19kB 2017-12-20T04:...
    acquisition_date_img2       (mid_date) datetime64[ns] 19kB 2018-08-07T04:...
    ...                          ...
    vy_error_modeled            (mid_date) float32 9kB 40.5 28.6 ... 60.0 30.0
    vy_error_slow               (mid_date) float32 9kB 8.0 1.7 1.2 ... 12.9 3.6
    vy_error_stationary         (mid_date) float32 9kB 8.0 1.7 1.2 ... 12.9 3.6
    vy_stable_shift             (mid_date) float32 9kB 8.9 -4.9 -0.7 ... 8.4 2.9
    vy_stable_shift_slow        (mid_date) float32 9kB 8.9 -4.9 -0.7 ... 8.4 2.9
    vy_stable_shift_stationary  (mid_date) float32 9kB 8.9 -4.9 -0.7 ... 8.4 2.9
Attributes: (12/19)
    Conventions:                CF-1.8
    GDAL_AREA_OR_POINT:         Area
    author:                     ITS_LIVE, a NASA MEaSUREs project (its-live.j...
    autoRIFT_parameter_file:    http://its-live-data.s3.amazonaws.com/autorif...
    datacube_software_version:  1.0
    date_created:               25-Sep-2023 22:00:23
    ...                         ...
    s3:                         s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    skipped_granules:           s3://its-live-data/datacubes/v2/N30E090/ITS_L...
    time_standard_img1:         UTC
    time_standard_img2:         UTC
    title:                      ITS_LIVE datacube of image pair velocities
    url:                        https://its-live-data.s3.amazonaws.com/datacu...
fig, ax = plt.subplots()
s2_mean = np.sqrt(s2_subset.vx.mean(dim='mid_date')**2 + (s2_subset.vy.mean(dim='mid_date')**2))
a = s2_mean.plot(ax=ax)
a.colorbar.set_label('meter/year')
fig.suptitle('Sentinel 2 obs')
ax.set_title('Mean velocity magnitude over time');
_images/7d9f8da1eaeabd1679e0e50936812f92d5afd46ed9ceab3586be5e53015eb3de.png

Combine the temporal mean velocities for each sensor into one object#

The plots that we just constructed for each sensor are informative but not great for comparing velocity measurements calculated from each sensor because the colorscales aren’t constant across each sensor. Let’s create a new object that contains the mean magnitude of velocity over time for each sensor and plot them so that they’re easier to compare.

First, we’ll use expand_dims() to add a ‘sensor’ dimension to each dataset and name it appropriately:

l8_mean = l8_mean.expand_dims({'sensor':['L8']})
l7_mean = l7_mean.expand_dims({'sensor':['L7']})
s1_mean = s1_mean.expand_dims({'sensor':['S1']})
s2_mean = s2_mean.expand_dims({'sensor':['S2']})

Next, we want to combine all of these objects together. Xarray has a number of methods for combining data that you can read about here. Because we want to combine the objects along the sensor dimension, xr.concat() is the most appropriate method:

all_sensors = xr.concat([l8_mean, 
                       l7_mean,
                       s1_mean,
                       s2_mean], dim='sensor')
all_sensors.sensor
<xarray.DataArray 'sensor' (sensor: 4)> Size: 32B
array(['L8', 'L7', 'S1', 'S2'], dtype=object)
Coordinates:
  * sensor       (sensor) object 32B 'L8' 'L7' 'S1' 'S2'
    spatial_ref  int64 8B 0
    mapping      int64 8B 0

Now we can visualize the temporal averages for each sensor. Note that we use different syntax to specify the colorbar label in this example. Because we are creating a FacetGrid plot object, we don’t use ax objects. Instead we pass the cbar_kwargs dict object:

a = all_sensors.plot(col='sensor', cbar_kwargs={'label':'meters/year'});
_images/3c311088d1b856cf2225210ae9370c8cdfd821a85cfa9fe2a1825b5ee60dd24b.png

ITS_LIVE is exciting because it combines velocity data from a number of satellites into one accessible and efficient dataset. From this brief look, you can see snapshot overviews of the different data within the dataset and begin to think about processing steps you might take to work with the data further.

Checking coverage along a dimension#

It would be nice to be able to scan/visualize and observe coverage of a variable along a dimension

First need to make a mask that will tell us all the possible ‘valid’ pixels. ie pixels over ice v. rock.

valid_pixels = sample_glacier_raster.v.count(dim=['x','y'])
valid_pix_max = sample_glacier_raster.v.notnull().any('mid_date').sum(['x','y'])

sample_glacier_raster['cov'] = valid_pixels/valid_pix_max
#how many time steps are duplicates?, there are 16872 unique vals in mid_dates
np.unique(sample_glacier_raster['mid_date'].data).shape
(3018,)

Start by grouping over mid_date. Would expect 3,018 (# unique time steps) with mostly groups of 1, groups of more than one on duplicate coords

test_gb = sample_glacier_raster.groupby(sample_glacier_raster.mid_date)
type(test_gb.groups)
dict

test_gb.groups is a dict, so let’s explore that object. The keys correspond to mid_date coordinates (see this for yourself by running test_gb.groups.keys()), so the values should be the entries at that coordinate.

Visualize data coverage over time series#

Let’s take a look at the data coverage over this glacier across the time series:

fig, ax = plt.subplots(figsize=(30,3))
sample_glacier_raster.cov.plot(ax=ax, linestyle='None',marker = 'x')
[<matplotlib.lines.Line2D at 0x7f02d469f610>]
_images/a345a9eed765f4db7b86e3ba4db6846aac8e3d64fc4d9f3b79c01c61a8c1352b.png

But what if we wanted to explore the relative coverage of the different sensors that make up the its_live dataset as a whole? We can use groupby to group the data based on a single condition such as satellite_img1 or mid_date.

sample_glacier_raster.cov.groupby(sample_glacier_raster.satellite_img1)
<DataArrayGroupBy, grouped over 1 grouper(s), 5 groups in total:
    'satellite_img1': 5/5 groups present with labels '1A', '2A', '2B', '7', '8'>
sample_glacier_raster.groupby('mid_date')
<DatasetGroupBy, grouped over 1 grouper(s), 3018 groups in total:
    'mid_date': 3018/3018 groups present with labels 2017-01-01T16:15:50.6605240...>

However, if we want to examine the coverage of data from different sensor groups over time, we would essentially want to groupby two groups. To do this, we use flox

import flox.xarray

This is the xr.DataArray on which we will perform the grouping operation using flox

sample_glacier_raster.cov
<xarray.DataArray 'cov' (mid_date: 3974)> Size: 32kB
array([0.35219236, 0.        , 0.        , ..., 0.        , 0.        ,
       0.        ], shape=(3974,))
Coordinates:
  * mid_date     (mid_date) datetime64[ns] 32kB 2018-04-14T04:18:49.171219968...
    spatial_ref  int64 8B 0
    mapping      int64 8B 0

Using flox, we will define a coverage object that takes as inputs the data we want to reduce, the groups we want to use to group the data and the reduction we want to perform.

coverage = flox.xarray.xarray_reduce(
    # array to reduce
    sample_glacier_raster.cov,
    # Grouping by two variables
    sample_glacier_raster.satellite_img1.compute(),
    sample_glacier_raster.mid_date,
    # reduction to apply in each group
    func="mean",
    # for when no elements exist in a group
    fill_value=0,
)

Now we can visualize the coverage over time for each sensor in the its_live dataset. Cool!

plt.pcolormesh(coverage.mid_date, coverage.satellite_img1, coverage, cmap='magma')
plt.colorbar();
_images/70e3b720a6c61eba808a971c3e5103db94966e73c5be19e5c135e2f0789d25d9.png

Conclusion#

This notebook displayed basic data inspection steps that you can take when working with a new dataset. The following notebooks will demonstrate further processing, analytical and visualization steps you can take. We will be working with the same object in the following notebook, so we can use cell magic to store the object and read it in in the next notebook, rather than making it all over again. You can read more about the magic command here.

%store sample_glacier_raster
Stored 'sample_glacier_raster' (Dataset)